Integrated coding Instructor 2019 IQCS ## First written test **Integrated coding Instructor** | | | | | | oding Instructor | |--------------------------------------|---|---|---|---------------|------------------| | Field | Coding area | Qualification | Integrated coding
Instructor | Valid
date | 2019 | | Exam type | Multiple choice | No. of Ques. | 40 | Exam
hour | 90 minutes | | Title | Sub title |] | Detail | No. of Ques. | Distribution | | Teaching method and teaching ability | 1. Attitude | | expression, greeting, eisure, enthusiasm, | | | | | 2. Conversational method | | ciation, speed,
guage, honorific,
s, and voice | | | | | 3. Lecture development | understandin | (Motivation, content g, systematic), delivering core | 4 | 10% | | | 4. Communication | technique, ur confirmation | erminology / explanation, parable derstanding and of question contents, rmation, fact / opinion | | | | | 5. Teaching method | reports, teach diversity) | thod (use of cases, ning materials, ls (screen transitions, | | | | Understanding computing | 1. Information society and life | computerUnderstandir copyright | ng and protection of finternet and game | | | | | 2. Understanding information devices | • Understandir system | ng of software ng the operating ng the internal | 4 | 10% | | | 3. Understanding information processing | information : Concept of | umbers and text binary number d binary number nary number | | | | Computational | 1. Understanding and applying | _ | itegrating and inking commentary. | 16 | 40 | F-01-12 (Rev. 0) Page2 / 8 | Thinking and problem solving | computational
thinking skills | Significance and importance of procedural problem solving The difference between digital and analog information. Understand and express the concepts of data and information. Differentiate and utilize types of information. Digital representation of various types of information. Understand and utilize the components of computing thinking. | | |------------------------------|--|---|--| | | 2. Problem Analysis and Structuralizati on | Understand and analyze a given problem. Explore and develop and apply problem-solving methods. The role of data in problem-solving Effective improvement of problem-solving methods. Simplify by removing unnecessary elements. Organize and express data in various ways. Understand and structure the concepts of linear and nonlinear structures | | | | 3. Solving problems in daily life through computing thinking | Simplify a given problem. Understand and apply abstraction Find patterns and formulate them by searching for recurring trends and rules. Describe the problem-solving method in order. Finding solutions to various problems and choosing the right method Explanation of problems of problem-solving methods and explanation of improving methods | | | Algorithm design | Creating an algorithm for problemsolving | Express the problem-solving process in order. Understanding that algorithms are the order in which things happened. Express the problem-solving process with pictures or symbols. Express the problem-solving process in order. Understand the relationship between a computer's functions and algorithms. Understanding algorithm Design the algorithm. Expressing algorithm. Find and correct errors in algorithms. | | F-01-12 (Rev. 0) Page3 / 8 | | 2. Algorithm design of complex structures | Modify to a more effective algorithm Understanding the relationship between a computer's functions and algorithms. Predicting the operational results of algorithms. Analyze algorithm. Understanding of the control structure of algorithms. Complex representation of the control structure of an algorithm. | | | |--|---|---|----|----| | | 1. Understanding the programming language | Concepts and types of programming languages. Write input/output statement of data. Recognize the beginning and end of the program. Explanation of the procedure for executing the programming language. Understanding and using conditional statements and repeated statements. Understanding and using variables and operators. | | | | | 2. programming design | Understanding the conditions and needs of the problem. Efficient program design. Check and correct program error. Understanding complex structures and programming | | | | Programming language understanding and programming | 3. Block coding | Understanding screen configuration and key terms. Effect of continuous background using coordinates. Creating a Story. Use of sequential and repetitive structures that fit the situation. The use of multiple selection, multiple repetition structure. Implement different actions considering different conditions. Understand variables and constants, and write input and output programs. Understand and use coordinates to create programs Know the difference between signal and replication and create a program Configure two or more scenes through scene connections. Writing programs using functions Writing programs using lists. | 16 | 40 | F-01-12 (Rev. 0) Page4 / 8 ## 2nd practical test Integrated coding Instructor Level I | Field | Coding area | Qualification | Integrated coding
Instructor | Valid date | 2019 | |--------------------------------------|---|---|---|--------------|--------------| | Exam type | Short answer | No. of Ques. | 3 | Exam hour | 120 minutes | | Title | Sub title | | Detail | No. of Ques. | Distribution | | | 1. Attitude | confidence, posture | expression, greeting,
leisure, enthusiasm, and | | | | | 2. Conversational method | • | nciation, speed, standard
pnorific, speech habits, and | | 50 | | Teaching | 3. movement | | ent, gestures, space
nd Show-See-Speak | | | | method
and
teaching
ability | 4. Lecture development | (Motivation, systematic d | of lecture, introduction
content understanding,
evelopment), Delivering core
clusion, time compliance | | | | | 5. Communication | (Motivation, systematic d | | | | | | 6. Teaching method | teaching mat | ethod (use of cases, reports, terials, diversity) ols (screen transitions, using | | | | | 1. Problem-
solving | expressed in | n-solving process can be pictures or symbols. It resolution result can be order. | | | | Understand ing coding | 2. Algorithm | of occurrence Express the stress the | that the algorithm is in order e. repetition structure as a selection structure as a rect errors in the algorithm. bly the most effective | 2 | 100 | | The
Practice of
coding | 1. Game creation Block coding (sequential, iteration, condition, signal, variable, random number) | 'Repeat ~' co Execute other through the ' Perform conthe '~ if or if Create dialog sprites consite increase the A game play watch. A work of se | er contextual commands if command. textual commands through | | | F-01-12 (Rev. 0) Page5 / 8 | Field | Coding area | Qualification | Integrated coding
Instructor | Valid date | 2019 | |-----------|--|--|--|--------------|--------------| | Exam type | Short answer | No. of Ques. | 3 | Exam hour | 120 minutes | | Title | Sub title | | Detail | No. of Ques. | Distribution | | | 2. Math coding (Create a private operation calculator) | algorithm an accordingly. Calculate the correct resul | e entered data to output the ts. | | | | | 3. Math coding (expressing an analogue clock) | Write the flow chart according to the algorithm and write the script accordingly. Correct control with an understanding of the angle. | | | | | | 4. Math coding (Find maximum, minimum) | Understand and use comparative computations and temporary variables. Understand the arrangement and use the list. | | | | | | 5. Math coding (Find symmetric number) | implementin | ng mathematical concepts, ag algorithms that match riting scripts. | | | ## 2nd practical test Integrated coding Instructor Level II | | Integrated coding Instructor Level | | | | | |---------------------|---|---|---|--------------|--------------| | Field | Block coding and physical computing education | Qualification | Integrated coding
Instructor | Valid date | 2019 | | Exam type | Multiple choice/
Short answer | No. of Ques. | 3 | Exam hour | 120 minutes | | Title | Sub title | | Detail | No. of Ques. | Distribution | | | 1. Attitude | * * | expression, greeting, leisure, enthusiasm, and | | | | | 2. Conversational method | Clear pronunciation, speed, standard
language, honorific, speech habits, and
voice | | 시연 | 50 | | Teaching method and | 3. movement | | Gaze treatment, gestures, space utilization, and Show-See-Speak | | | | teaching ability | 4. Lecture development | Introduction of lecture, introduction (Motivation, content understanding, systematic development), Delivering core content, conclusion, time compliance | | 2 | 100 | | | 5. Communication | • Introduction of lecture, introduction (Motivation, content understanding, systematic development), Delivering core content, conclusion, time compliance | | 2 | 100 | F-01-12 (Rev. 0) Page6 / 8 | Field | Block coding and physical computing education | Qualification | Integrated coding
Instructor | Valid date | 2019 | |-------------------------------------|--|---|--|--------------|--------------| | Exam type | Multiple choice/
Short answer | No. of Ques. | 3 | Exam hour | 120 minutes | | Title | Sub title | | Detail | No. of Ques. | Distribution | | | 6. Teaching method | Teaching method (use of cases, reports, teaching materials, diversity) Directive tools (screen transitions, using beams) | | | | | | 1. Information society and life | Correct etiquette of using a computer Understanding and protection of copyright Prevention of internet and game addiction | | | | | Understand ing computing | Understanding of software Understanding the operating system | | ng of software ng the operating system | | | | | 3. Understanding information processing | : Concept of
: Number an | numbers and text information Thinary number d binary number inary number | | | | Computa tional Thinking and problem | Understanding and applying computational thinking skills Problem Analysis and Structuralizati | The age of integrating and computing thinking commentary. Significance and importance of procedural problem solving The difference between digital and analog information. Understand and express the concepts of data and information. Differentiate and utilize types of information. Digital representation of various types of information. Understand and utilize the components of computing thinking. Understand and analyze a given problem. Explore and develop and apply problem- | | | | | solving | 3. Solving problems in daily life through | Effective im solving meth Simplify by elements. Organize and ways. Understand a linear and no Simplify a g Understand a Find patterns | lata in problem-solving provement of problem- | | | F-01-12 (Rev. 0) Page7 / 8 | Field | Block coding and physical computing education | Qualification | Integrated coding
Instructor | Valid date | 2019 | |----------------------------|---|---|--|--------------|--------------| | Exam type | Multiple choice/
Short answer | No. of Ques. | 3 | Exam hour | 120 minutes | | Title | Sub title | | Detail | No. of Ques. | Distribution | | | computing
thinking | Describe the problem-solving method in order. Finding solutions to various problems and choosing the right method Explanation of problems of problem-solving methods and explanation of improving methods | | | | | | 1. Expressing and | Expression of | of information | | | | | managing
information | | | | | | Algorithm | 2. Practice of | Structuraliza | ntion of the problem | | | | and
programmi | computing
thinking | Abstract of t | he problem | | | | ng | | Modeling an | nd simulation | | | | | 3. Practice of algorithm | | gorithms of complex | | | | | | Analysis and evaluation of algorithms | | | | | | 1. creative problem solving | | ative ideas related to real life
ent algorithms for problem | | | | Project performanc e | 2. Physical computing | • Implement to actuators. | he product using sensors and | | | | - | 3. Debugging | Present meth
problem-sol-
and circuit c | | | | | Computing | 1. Integrated | Programing and Integrating | | | | | and
problem-
solving | Activity Based
on Computing
Thinking | Produce and | evaluate team projects | | | F-01-12 (Rev. 0) Page8 / 8